
Foxit Mobile PDF SDK

www.foxitsoftware.com

1

TABLE OF CONTENTS

1 Introduction to Foxit Mobile PDF SDK ..2

1.1 Why Foxit Mobile PDF SDK is your choice.. 2

1.2 Foxit Mobile PDF SDK ... 3

1.3 Key Features ... 4

1.4 Evaluation ... 4

1.5 License .. 5

1.6 About this Guide .. 5

2 Getting Started ...6

2.1 System Requirements .. 6

2.2 What is in the Package ... 6

2.3 How to run a demo .. 8

2.3.1 Function demo .. 8

2.3.2 Viewer control demo .. 11

2.3.3 Complete PDF viewer demo.. 14

2.4 How to make an Android app with Foxit Mobile PDF SDK... 18

2.4.1 Create a new Android project ... 19

2.4.2 Integrate Foxit Mobile PDF SDK into your apps .. 23

2.4.3 Apply the license key .. 26

2.4.4 Display a PDF document ... 27

2.4.5 Add support for Text Search, Bookmarks, and Annotations ... 31

3 Customizing the UI implementation .. 39

4 Creating a custom tool .. 46

5 Technical Support ... 56

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

2

1 Introduction to Foxit Mobile PDF SDK

Have you ever worried about the complexity of the PDF specification? Or have you ever felt lost when

asked to build a full-featured PDF app within a limited time-frame? If your answer is “Yes”, then

congratulations! You have just found the best solution in the industry for rapidly integrating PDF

functionality into your apps.

1.1 Why Foxit Mobile PDF SDK is your choice

Foxit is an Amazon-invested leading software provider of solutions for reading, editing, creating,

organizing, and securing PDF documents. Foxit PDF SDK libraries have been used in many of today’s

leading apps, and they are proven, robust, and battle-tested to provide the quality, performance, and

features that the industry’s largest apps demand. Foxit Mobile PDF SDK is a new SDK product which is

developed for providing quick PDF viewing and manipulation support for mobile platforms. Customers

choose it for the following reasons:

 Easy to integrate

Developers can seamlessly integrate Foxit Mobile PDF SDK into their own apps with just a few lines of

code.

 Perfectly designed

Foxit Mobile PDF SDK is designed with a simple, clean, and friendly style, which provides the best user

experience.

 Flexible customization

Foxit Mobile PDF SDK provides the source code for the user interface which lets the developers have full

control of the functionality and appearance of their apps.

 Robust performance on mobile platforms

Foxit Mobile PDF SDK provides an OOM (out-of-memory) recovery mechanism to ensure the app has

high robust performance when running the app on a mobile device which offers limited memory.

 Powered by Foxit’s high fidelity rendering PDF engine

The core technology of Foxit Mobile PDF SDK is based on Foxit’s PDF engine, which is trusted by a large

number of the world’s largest and well-known companies. Foxit’s powerful engine makes the app fast

on parsing, rendering, and makes document viewing consistent on a variety of devices.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

3

 Premium World-side Support

Foxit offers premium support for its developer products because when you are developing mission

critical products you need the best support. Foxit has one of the PDF industry’s largest team of support

engineers. Updates are released on a regular basis to improve user experience by adding new features

and enhancements.

1.2 Foxit Mobile PDF SDK

Foxit Mobile PDF SDK is a Rapid Development Kit for mobile platforms which focuses on helping

developers easily integrate powerful Foxit PDF technology into their own apps. With Foxit Mobile PDF

SDK, even developers with a limited knowledge of PDF can quickly build a PDF viewer with just a few

lines of code. Now, it is available on iOS and Android platforms.

Foxit Mobile PDF SDK includes three Level APIs as the following picture.

Three Level APIs for Foxit Mobile PDF SDK

 PDF Core API

The PDF Core API is the heart of this SDK and is built on Foxit’s powerful underlying technology. It

provides the functionality for basic PDF operation features, and is utilized by the PDF View Control

API and UI Extensions API, which ensures the apps can achieve high performance and efficiency. The

Core API can be used by used independently for document rendering, analysis, text extraction, text

search, annotation creation and manipulation and much more.

 PDF View Control API

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

4

The PDF View Control API is a utility class that provides the functionality for developers to interact with

rendering PDF documents according to their requirements. With Foxit’s renowned and widely used PDF

rendering technology at its core, the Viewer Control provides fast and high quality rendering, zooming,

scrolling, page view modes and page navigation features. The View Control derives from platform

related viewer classes (e.g. UIView on iOS and Android.View.ViewGroup on Android) and allows for

extension to accommodate specific user needs.

 UI Extensions API

The UI Extensions API is an open source library that provides a customizable user interface with built-in

UI implementations for text selection, interactive markup annotation creation and editing, night mode

viewing, bookmarks and page thumbnail navigation and full-text searching. The features in the UI

extensions library are implemented using the PDF Core API and View Control API. Developers can utilize

these ready-to-use UI implementations to build a PDF viewer quickly, and also have complete flexibility

and control to customize the UI design as desired.

1.3 Key Features

Foxit Mobile PDF SDK has several main features which help app developers quickly implement the

functions that they really need and reduce the development cost.

Features

PDF Document Open and close files, set and get metadata

PDF Page Parse, render, read and set the properties of a page

Render Graphics engine created on a bitmap for platform graphics device

PDF Text Select Select text in a PDF document

Bookmark Directly locate and link to point of interest within a document

Annotation Create, edit and remove annotations

Out of Memory Recover from an OOM condition

1.4 Evaluation

Foxit Mobile PDF SDK allows users to download trial version to evaluate SDK. The trial version has no

difference from the standard licensed version except for the free 28-day trial limitation and the trial

watermarks in the generated pages. After the evaluation period expires, customers should contact the

Foxit sales team and purchase licenses to continue using Foxit Mobile PDF SDK.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

5

1.5 License

Developers should purchase licenses to use Foxit Mobile PDF SDK in their solutions. Licenses grant

developers permission to release their apps which utilize Foxit Mobile PDF SDK. However, users are

prohibited to distribute any documents, sample code, or source code in the released package of Foxit

Mobile PDF SDK to any third party without written permission from Foxit Software Incorporated.

1.6 About this Guide

Foxit Mobile PDF SDK is currently available on iOS and Android platforms. This guide is intended for the

developers who need to integrate Foxit Mobile PDF SDK for Android into their own apps. It aims at

introducing the following sections:

 Section 1: gives an introduction of Foxit Mobile PDF SDK.

 Section 2: illustrates the package structure, running demo, and adding PDF SDK into app.

 Section 3: introduces how to customize the UI implementation.

 Section 4: shows how to create a custom tool.

 Section 5: provides support information.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

6

2 Getting Started

It is very easy to setup Foxit Mobile PDF SDK and see it in action! It takes just a few minutes and we will

show you how to use it on the Android platform. The following sections introduce the structure of the

installation package, how to run a demo, and how to create your own project in Android Studio.

2.1 System Requirements

Runtime requirements:

 Android 2.2 or newer/ API 8 or higher

 32/64-bit ARM (armeabi-v7a / arm64-v8a) or 32-bit Intel x86 CPU

Support Android AAR archives: Gradle 2.1.0 or later

The IDE for the demos:

 Android Studio 2.1.1

 JDK: 1.7.0.79

2.2 What is in the Package

Download the “foxit_mobile_pdf_sdk_android_en.zip” package, and extract it to a new directory like

“foxit_mobile_pdf_sdk_android_en” as shown in the Figure 2-1. The package contains:

docs: A folder containing API references, developer guide.

libs: A folder containing license files, .so libraries, Jar, AAR

files, and ui extensions library source code.

samples: A folder containing Android sample projects.

getting_started_android.pdf: A quick guide for Foxit Mobile PDF SDK for Android.

legal.txt: Legal and copyright information.

release_notes.txt: Release information.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

7

Figure 2-1

In the “libs” folder as shown in the Figure 2-2, there are items that make up the core components of

Foxit Mobile PDF SDK for Android.

Figure 2-2

 librdk.so (libs/armeabi-v7a, libs/arm64-v8a, libs/x86) - called by the Java APIs in the FoxitRDK.jar.

It is the heart of the SDK and contains the core functionalities of Foxit Mobile PDF SDK, and it is

built separately for each architecture. Currently it is available for armeabi-v7a, arm64-v8a, and

x86.

 FoxitRDK.jar- used by the Java platform. It includes all of the Java APIs of Foxit Mobile PDF SDK.

 FoxitRDKUIExtensions.aar - generated by the “uiextensions_src” project found in the “libs”

folder. It includes the FoxitRDK.jar, built-in UI implementation, and resource files that are

needed for the built-in UI implementations, such as images, strings, color values, layout files,

and other Android UI resources.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

8

 uiextensions_src project - found in the “libs” folder. It is an open source library that contains

some ready-to-use UI module implementations, which can help developers rapidly embed a fully

functional PDF reader into their Android app. Of course, developers are not forced to use the

default UI, they can freely customize and design the UI for their specific apps through the

“uiextensions_src” project.

At this point you should just be getting a feel for what Foxit Mobile PDF SDK package looks like, we’re

going to cover everything in detail in a bit.

2.3 How to run a demo

Download and install Android Studio IDE (https://developer.android.com/studio/index.html).

Note: In this guide, we do not cover the installation of Android Studio, Android SDK, and JDK. You can

refer to Android Studio’s developer site if you haven’t installed it already.

Foxit Mobile PDF SDK provides three useful demos for developers to learn how to call the SDK as shown

in the Figure 2-3.

Figure 2-3

2.3.1 Function demo

The function demo is provided to show how to use Foxit Mobile PDF SDK to realize some specific

features related to PDF with PDF core API. This demo includes the following features:

 pdf2txt: extract text from a PDF document to a TXT file.

 bookmark: edit bookmark appearances and titles.

 annotation: add annotations to a PDF page.

 docinfo: export document information of a PDF to a TXT file.

http://www.foxitsoftware.com/
https://developer.android.com/studio/index.html

Foxit Mobile PDF SDK

www.foxitsoftware.com

9

 render: render a specified page to Bitmap.

To run it in Android Studio, follow the steps below:

a) Load the demo in Android Studio following “File -> New -> Import Project…” to import the
project, or “File -> Open…” to open the project directly, and then choose the directory where
the demo was placed.

b) Launch an Android device or an emulator (AVD). Open the Android Device Monitor, select the
device or emulator that has just been launched and create a new folder named “input_files”
under the “mnt/sdcard”(a soft link), then you can find the created folder under the
“storage/sdcard”. Push the three test files found in the “samples/test_files” folder to this folder.
In this guide, an AVD targeting 4.4.2 will be used as an example. Then, the added PDF files will
be displayed in “storage/sdcard/input_files” as shown in the Figure 2-4.

Note For some Android device, maybe you can only find sdcard0, or sdcard1, such as these. The
name of the sdcard is not important, just make sure you have created an “input_files” folder in
your device’s storage card and pushed the test files to this folder.

Figure 2-4

c) Click on “Run -> Run ’app’” to run the demo. After building the demo successfully, the features

are listed like the Figure 2-5.

Note: when running the demo, if you encounter an error like “Error running app: Instant Run

requires ‘Tools|Android|Enable ADB integration’ to be enabled”, just follow the prompt to

enable the ADB integration in “Tools -> Android -> Enable ADB integration”.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

10

Figure 2-5

d) Click the feature buttons in the above picture to perform the corresponding actions. For
example, click “pdf2txt”, and then a message box will be popped up as shown in the Figure 2-6.
It shows where the text file was saved to. Just run the demo and try the features.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

11

Figure 2-6

2.3.2 Viewer control demo

The viewer control demo demonstrates how to implement the features related to the View Control

feature level, such as performing annotations (note, highlight, underline, strikeout, squiggly, etc.),

changing layout, text search, outline, and page thumbnail. The logical structure of the code is quite clear

and simple so that developers can quickly find the detailed implementation of features which are used

widely in PDF apps, such as a PDF viewer. With this demo, developers can take a closer look at the APIs

provided in Foxit Mobile PDF SDK.

To run the demo in Android Studio, please refer to the setup steps outlined in the Function demo.

Please push the “getting_started_android.pdf” file found in the download package onto the Android

device or emulator before running this demo.

Figure 2-7 shows what the demo looks like after it was built successfully. Here, an AVD targeting 4.4.2

will be used as an example to run the demo.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

12

Figure 2-7

Click more in the above picture to see more features as shown in the Figure 2-8.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

13

Figure 2-8

Now we can choose one button to perform the action and see the result. For example, click “Outline”,

then you will see the outline (outline is the technical terms for bookmark in the PDF specification) of the

document as shown in the Figure 2-9. Try using the other features to see it in action.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

14

Figure 2-9

2.3.3 Complete PDF viewer demo

The complete PDF viewer demo demonstrates how to use Foxit Mobile PDF SDK to realize a completely

full-featured PDF viewer which is almost ready-to-use as a real world mobile PDF reader. This demo

utilizes all of the features and built-in UI implementations which are provided in Foxit Mobile PDF SDK.

To run the demo in Android Studio, please refer to the setup steps outlined in the Function demo.

Here, an AVD targeting 4.4.2 will also be used as an example to run the demo. After building the demo

successfully, on the start screen, it will list all the PDF files stored in the device’s SD card as shown in the

Figure 2-10.

Note If you want to use other PDF files to test this demo, you need to push them onto the device’s SD

card.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

15

Figure 2-10

Here, we choose the “getting_started_android.pdf” document, click it, and then it will be opened and

displayed as shown in the Figure 2-11.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

16

Figure 2-11

This demo realizes a completely full-featured PDF viewer, please feel free to run it and try it.

For example, it provides the page thumbnail feature. You can click the View menu, choose the

Thumbnail as shown in the Figure 2-12, and then the thumbnail of the document will be displayed as

shown in the Figure 2-13.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

17

Figure 2-12

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

18

Figure 2-13

2.4 How to make an Android app with Foxit Mobile PDF SDK

This section will help you to quickly get started with using Foxit Mobile PDF SDK to make an Android app
with step-by-step instructions provided. From now, you can get familiar with Foxit Mobile PDF SDK and
create your first PDF Android app in Android Studio. This section includes the following steps:

1) Create a new Android project

2) Integrate Foxit Mobile PDF SDK into your apps

3) Apply the license key

4) Display a PDF document

5) Add support for Text Search, Bookmarks, and Annotations

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

19

2.4.1 Create a new Android project

In this guide, we use Android Studio 2.1.1, along with Android API revision 23.

Open Android Studio, choose File -> New -> New Project… to start the Create New Project wizard, and

then fill the New Project dialog as shown in the Figure 2-14. After filling, click Next.

Figure 2-14

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

20

In the Target Android Devices dialog, select “Phone and Tablet” to run your app, and set the Minimum

SDK to API 8, which is shown in the Figure 2-15. Then, click Next.

Figure 2-15

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

21

In the Add an activity to Mobile dialog, select “Empty Activity” (for some other Android Studio versions,

it might be “Blank Activity”) as shown in the Figure 2-16, and then click Next.

Figure 2-16

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

22

In the Customize the Activity dialog, customize your activity as desired, here, we use the default setting

as shown in the Figure 2-17, and then click Finish.

Figure 2-17

Note: If your Android Studio has installed a high Android SDK version, such as API 24, after building the

project, it may encounter a problem as follows:

Error:Execution failed for task ':app:processDebugManifest'.

> Manifest merger failed: uses-sdk:minSdkVersion 8 cannot be smaller than version 9 declared in library

[com.android.support:appcompat-v7:24.2.0] D:\Android_Studio\Test_android\app\build\intermediates\exploded-

aar\com.android.support\appcompat-v7\24.2.0\AndroidManifest.xml

Suggestion: use tools:overrideLibrary="android.support.v7.appcompat" to force usage

To solve this problem, you should modify the settings in the app’s “build.gradle” file (if you are using the

“Android” view panel then you might see two “build.gradle” files, use the “Module:app” one):

 If you want to support the “minSdkVersion 8”, then please change the “CompileSdkVersion” and

“targetSdkVersion” entries to a lower SDK version, such as 23, and change the

“buildToolsVersion” entry to a lower version such as 23.0.2, and then change the

“com.android.support:appcompat-v7:24.2.0” entry to “com.android.support:appcompat-

v7:23.4.0”.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

23

 If you want to use “com.android.support:appcompat-v7:24.2.0” library, please change the

“minSdkVersion” entry to version higher than 8.

2.4.2 Integrate Foxit Mobile PDF SDK into your apps

Note: In this section, we will use the default built-in UI implementation to develop the app, for simplicity

and convenience, we only need to add the following files to the Test_android project.

 FoxitRDKUIExtensions.aar - generated by the “uiextensions_src” project found in the “libs”

folder. It includes the FoxitRDK.jar, built-in UI implementations, and resource files that are

needed for the built-in UI implementations, such as images, strings, color values, layout files,

and other Android UI resources.

 librdk.so (libs/armeabi-v7a, libs/arm64-v8a, libs/x86) - called by Java APIs in the FoxitRDK.jar. It

is the heart of the SDK containing the core functionalities of Foxit Mobile PDF SDK, and built

separately for each architecture. Currently it is available for armeabi-v7a, arm64-v8a, and x86.

Note: For this project, we will run the project on an emulator with x86 architecture, so we just

add the “x86/librdk.so” library into the project. If you are not clear about the architecture of the

device you want to use, you can add all of the “.so” libraries, because the linker can distinguish

the device’s architecture and then choose the proper library.

To add the above two files into Test_android project, please switch to the “Project” view panel and then

follow the steps below:

a) Copy and paste the “FoxitRDKUIExtensions.aar” file from the “libs” folder of the download

package to “Test_android\app\libs” folder.

b) Copy and paste the “librdk.so” file from the “libs\x86” folder of the download package to

“Test_android\app\libs\x86” (note that you might need to create this folder by yourself).

Then, the project should look like the Figure 2-18.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

24

Figure 2-18

c) Add a reference to the “librdk.so”. Inside the app’s “build.gradle” file, add the following

configuration:

 build.gradle:

android {

 sourceSets {
 main {
 jniLibs.srcDirs = ['libs']
 }
 }
}

d) Include Foxit Mobile PDF SDK as a dependency in the project by setting up the App module in

the “build.gradle” file as follows:

First, define the “libs” directory as a repository in the app’s “build.gradle” repositories section.

build.gradle:

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

25

repositories {

 flatDir {
 dirs 'libs'
 }
}

And then, add “FoxitRDKUIExtensions.aar” to the dependencies.

dependencies {

 compile (name:'FoxitRDKUIExtensions', ext:'aar')
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.4.0'
}

After setting, rebuild the project following “Build -> Rebuild project”, you can see the detailed

information inside the “FoxitRDKUIExtensions.aar” in the “\app\build\intermediates\exploded-

aar\FoxitRDKUIExtensions” folder as shown in the Figure 2-19.

Figure 2-19

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

26

The following code shows “build.gradle” in its entirety.

build.gradle:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.2"

 defaultConfig {
 applicationId "com.foxit.test_android"
 minSdkVersion 8
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
 sourceSets {
 main {
 jniLibs.srcDirs = ['libs']
 }
 }
}

repositories {

 flatDir {
 dirs 'libs'
 }
}

dependencies {

 compile (name:'FoxitRDKUIExtensions', ext:'aar')
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.4.0'
}

Note So far, we set the compileSdkVersion and targetSdkVersion to API 23. If you also want to use API 23,

please make sure you have already installed the SDK Platform Android 6.0, API 23. If you have not

already done this, open the Android SDK Manager to download and install it first. (The targetSdkVersion

setting will be changed based on the project’s requirements in the following sections.)

2.4.3 Apply the license key

It is necessary for apps to initialize and unlock Foxit Mobile PDF SDK using a license before calling any

APIs. The function Library.init (sn, key) is provided to initialize Foxit Mobile PDF SDK. The trial license

files can be found in the “libs” folder of the download package. After the evaluation period expires, you

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

27

should purchase an official license to continue using it. Below you can see an example of how to unock

the SDK library. The next section will show where to include this code in the Test_android project.

import com.foxit.sdk.common.Library;
import com.foxit.sdk.common.PDFException;

System.loadLibrary("rdk");
try {
 Library.init("sn", "key");

} catch (PDFException e) {
 e.printStackTrace();
 return;
}

Note The parameter “sn” can be found in the “rdk_sn.txt” (the string after “SN=”) and the “key” can be found in

the “rdk_key.txt” (the string after “Sign=”).

2.4.4 Display a PDF document

So far, we have just created an Android app with a blank activity. Now, let’s start building a simple PDF

viewer with just a few lines of code.

Note: The UI extensions library is not required if you only want to display a PDF document.

To display a PDF document, you should add the PDF View Control to show the PDF in the

“activity_main.xml” found in the “app/src/main/res/layout”.

Update activity_main.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.foxit.test_android.MainActivity">

 <com.foxit.sdk.PDFViewCtrl
 android:id="@+id/pdfviewer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scrollbars="vertical|horizontal"/>
</RelativeLayout>

In the “MainActivity.java”, instantiate a PDFDoc object to load an existing PDF document

("/mnt/sdcard/getting_started_android.pdf"); and instantiate a PDFViewCtrl object to show the

document.

Note: By default, the MainActivity extends AppCompatActivity. We change it to extend FragmentActivity,

because the UI extensions library which will be utilized in the next section has used the features in the

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

28

FragmentActivity. In addition, please make sure you have pushed the “getting_started_android.pdf”

document onto the Android device or emulator that will be used to run this project.

Update MainActivity.java as follows:

package com.foxit.test_android;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;

import com.foxit.sdk.common.Library;
import com.foxit.sdk.common.PDFException;

import com.foxit.sdk.PDFViewCtrl;
import com.foxit.sdk.pdf.PDFDoc;

public class MainActivity extends FragmentActivity {

 private PDFViewCtrl pdfViewCtrl = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // The value of "sn" can be found in the “rdk_sn.txt”.
 // The value of "key" can be found in the “rdk_key.txt”.
 String sn = " ";
 String key = " ";

 // Load "librdk.so" library.
 System.loadLibrary("rdk");
 try {
 // initialize the library
 Library.init(sn, key);
 } catch (PDFException e) {
 e.printStackTrace();
 return;
 }

 // Inflate the view and get a reference to PDFViewCtrl
 setContentView(R.layout.activity_main);
 pdfViewCtrl = (PDFViewCtrl) findViewById(R.id.pdfviewer);

 // Load a document
 String path = "/mnt/sdcard/getting_started_android.pdf";
 try {
 PDFDoc document = PDFDoc.createFromFilePath(path);
 document.load(null);
 pdfViewCtrl.setDoc(document);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 try {

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

29

 Library.release();
 } catch (PDFException e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onResume() {
 super.onResume();
 if(pdfViewCtrl != null)
 pdfViewCtrl.requestLayout();
 }
}

Set the “users-permission” in the “AndroidManifest.xml” found in the “app/src/main” to give the project

permission to write and read the SD card of the Android devices or emulators.

Update the AndroidManifest.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.foxit.test_android">

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Note: If you want to run this project on an Android 6.0 (API 23) or higher devices/emulators, you need to

write some additional code to require the authorization of runtime permissions, or you can change the

targetSdkVersion in app’s “build.gradle” from 23 to the SDK version that is just less than 23, such as 10

(this version will be used in the next section).

The following code snippets can be used as a reference for you to require the authorization of runtime

permissions:

 // Check whether the device or simulator has the permission to access the external storage.
 if (ContextCompat.checkSelfPermission(this,
 Manifest.permission.READ_EXTERNAL_STORAGE)
 != PackageManager.PERMISSION_GRANTED) {

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

30

 // If has no permission, then request the permission.
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_EXTERNAL_STORAGE},
 REQUEST_CODE);
 } else {
 viewDoc();
 }
}

// Define a request code.
private static final int REQUEST_CODE = 1;

// Handle the request after user responds to the request in the dialog.
@Override
public void onRequestPermissionsResult(int requestCode,
 String permissions[], int[] grantResults) {
 switch (requestCode) {
 case REQUEST_CODE: {
 // 1.If the request is cancelled, the result array is empty.

 // 2.The permission was granted.
 if (grantResults.length > 0
 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 // Do the task you need to do.

 } else {

 // permission was denied. Disable the functionality that depends on this
permission.
 }
 return;
 }
 }
}

Fantastic! We have now finished building a simple Android app which uses Foxit Mobile PDF SDK to

display a PDF document with just a few lines of code. The next step is to run the project on a device or

emulator.

In this guide, we build and run the project on an AVD targeting Android 4.4.2 (API 19), and you will see

that the “getting_started_android.pdf” document is displayed as shown in the Figure 2-20. Now, this

sample app has some basic PDF features, such as zooming in/out and page turning. Just have a try!

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

31

Figure 2-20

2.4.5 Add support for Text Search, Bookmarks, and Annotations

Foxit Mobile PDF SDK comes with built-in support for features such as annotations, text search and

bookmarks which require a UI implementation. These visual features are implemented using Foxit

Mobile PDF SDK API and are shipped in UI extensions library.

Note The top toolbar and bottom toolbar are customized in the UI extensions library, so the system

theme needs to be set to “No Title” mode when using Foxit Mobile PDF SDK. You can refer to the

“uiextensions_src” project to customize the toolbar as you wish.

In the previous sections, we have introduced how to add Foxit Mobile PDF SDK to a project and how to

build a simple Android app for displaying a PDF document. Now, let’s extend the simple app

(Test_android) further to learn how to add support for text search, bookmarks, annotations and more.

Let’s take adding support for text search as an example for how to add the feature with Foxit Mobile

PDF SDK.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

32

a) Create a folder named “menu” located under the folder “app/src/main/res”, and then create a

Layout XML file named “main.xml” in that folder. This file is used to add menu item to the menu.

Here, we just add a search menu item as follows:

main.xml:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item
 android:id="@+id/search"
 android:title="search"/>
</menu>

Note In this project, we use the simplest menu button to quickly experience the features in the UI

extensions library. Due to Android system’s upgrade, the menu button has been removed in higher

versions. We recommend that change the targetSdkVersion to 10 when you try this guide project.

b) In the “activity_main.xml” file, add an “id” to the layout like below:

activity_main.xml:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.foxit.test_android.MainActivity"
 android:id="@+id/parentLayout">

 <com.foxit.sdk.PDFViewCtrl
 android:id="@+id/pdfviewer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scrollbars="vertical|horizontal"/>
</RelativeLayout>

c) In the “MainActivity.java” file we are now going to add the code necessary for including the search

functionality. The required code additions are shown below and further down you will find a full

example of what the “MainActivity.java” file should look like.

Import the following classes:

import android.view.Menu;
import android.view.MenuItem;

import android.view.Window;
import android.view.WindowManager;

import android.widget.RelativeLayout;

import com.foxit.uiextensions.UIExtensionsManager;
import com.foxit.uiextensions.modules.SearchModule;
import com.foxit.uiextensions.modules.SearchView;

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

33

Set the system theme to “No Title” mode and set the window to Fullscreen.

this.requestWindowFeature(Window.FEATURE_NO_TITLE);

getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);

Instantiate a RelativeLayout object to get the parent layout.

private RelativeLayout parent = null;

...

parent = (RelativeLayout) findViewById(R.id.parentLayout);

Instantiate a UIExtensionsManager object and set it to PDFViewCtrl.

private UIExtensionsManager uiextensionsManager = null;
...

uiextensionsManager = new UIExtensionsManager (this, parent, pdfViewCtrl);
pdfViewCtrl.setUIExtensionsManager(uiextensionsManager);

Instantiate a SearchModule object to load a search module, and instantiate a SearchView object to start

a search. Add two functions, onCreateOptionsMenu and onOptionsItemSelected like below:

private SearchModule searchModule = null;
private SearchView searchView = null;

...

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the menu if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 // Handle menu item clicks here.
 if (item.getItemId() == R.id.search) {

 if (searchModule == null) {
 searchModule = new SearchModule(this, parent, pdfViewCtrl);
 searchModule.loadModule();
 }
 searchView = searchModule.getSearchView();
 searchView.show();
 }
 return true;
}

The whole update of “MainActivity.java” is as follows:

package com.foxit.test_android;

import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import android.view.Menu;

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

34

import android.view.MenuItem;
import android.view.Window;
import android.view.WindowManager;
import android.widget.RelativeLayout;

import com.foxit.sdk.common.Library;
import com.foxit.sdk.common.PDFException;

import com.foxit.sdk.PDFViewCtrl;
import com.foxit.sdk.pdf.PDFDoc;

import com.foxit.uiextensions.UIExtensionsManager;
import com.foxit.uiextensions.modules.SearchModule;
import com.foxit.uiextensions.modules.SearchView;

public class MainActivity extends FragmentActivity {

 private PDFViewCtrl pdfViewCtrl = null;
 private RelativeLayout parent = null;
 private UIExtensionsManager uiextensionsManager = null;
 private SearchModule searchModule = null;
 private SearchView searchView = null;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // The value of "sn" can be found in the “rdk_sn.txt”.
 // The value of "key" can be found in the “rdk_key.txt”.
 String sn = " ";
 String key = " ";

 // Load "librdk.so" library.
 System.loadLibrary("rdk");
 try {
 // initialize the library.
 Library.init(sn, key);
 } catch (PDFException e) {
 e.printStackTrace();
 return;
 }

 // Turn off the title at the top of the screen.
 this.requestWindowFeature(Window.FEATURE_NO_TITLE);
 // Set the window to Fullscreen.
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // Inflate the view and get a reference to PDFViewCtrl.
 setContentView(R.layout.activity_main);
 pdfViewCtrl = (PDFViewCtrl) findViewById(R.id.pdfviewer);

 // Load a document.
 String path = "/mnt/sdcard/getting_started_android.pdf";
 try {
 PDFDoc document = PDFDoc.createFromFilePath(path);
 document.load(null);
 pdfViewCtrl.setDoc(document);
 } catch (Exception e) {

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

35

 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 parent = (RelativeLayout) findViewById(R.id.parentLayout);

 // Initialize a UIExtensionsManager object and set it to PDFViewCtrl.
 uiextensionsManager = new UIExtensionsManager(this, parent, pdfViewCtrl);
 pdfViewCtrl.setUIExtensionsManager(uiextensionsManager);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will automatically handle clicks
on the Home/Up.
 if (item.getItemId() == R.id.search) {
 if (searchModule == null) {
 searchModule = new SearchModule(this, parent, pdfViewCtrl);
 searchModule.loadModule();
 }
 searchView = searchModule.getSearchView();
 searchView.show();
 }
 return true;
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 try {
 Library.release();
 } catch (PDFException e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onResume() {
 super.onResume();
 if (pdfViewCtrl != null)
 pdfViewCtrl.requestLayout();
 }
}

Now that we have finished adding support for text search into the project, let’s run it on an AVD

targeting Android 4.4.2. You will see that the “getting_started_android.pdf” document is automatically

displayed, click the menu to see the “search” feature as shown in the Figure 2-21.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

36

Note: when running the project, if you encounter an error like “Error running app: Instant Run requires

‘Tools|Android|Enable ADB integration’ to be enabled”, just follow the prompt to enable the ADB

integration in “Tools -> Android -> Enable ADB integration”.

Figure 2-21

Click on the “search”, you can search anything as you like. For example, input “Foxit”, press “Enter”, and

then all of the search results will be listed as shown in the Figure 2-22.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

37

Figure 2-22

Click any result or any page entry in the list to jump to the specific location. Here, we click the “Page 2”

entry in the list, and then it will jump to the corresponding page and the first matched word will be

highlighted as shown in the Figure 2-23. You can click the previous or next button to find the previous or

next search result.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

38

Figure 2-23

You can refer to the above code or the demos found in the download package to add support for

bookmarks, annotations and any other available feature that you wish to add.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

39

3 Customizing the UI implementation

Customizing the UI implementation is straightforward. Foxit Mobile PDF SDK provides the source code

of the UI extensions library that contains ready-to-use UI module implementations, which lets the

developers have full control of styling the appearance as desired.

To customize the UI implementation, you need to follow these steps:

First, add the following files into your app. They are all found in the “libs” folder.

 uiextensions_src project - It is an open source library that contains some ready-to-use UI

module implementations, which can help developers rapidly embed a fully functional PDF

reader into their Android app. Of course, developers are not forced to use the default UI, they

can freely customize and design the UI for their specific apps through the “uiextensions_src”

project.

 FoxitRDK.jar - used by the Java platform. It includes all of the Java APIs of Foxit Mobile PDF SDK.

 librdk.so (libs/armeabi-v7a, libs/arm64-v8a, libs/x86) - called by the Java APIs in the FoxitRDK.jar.

It is the heart of the SDK and contains the core functionalities of Foxit Mobile PDF SDK, and it is

built separately for each architecture. Currently it is available for armeabi-v7a, arm64-v8a, and

x86.

Note The uiextensions_src project has a dependency on FoxitRDK.jar. It is best to put them in the

same directory. If they are not in the same directory, you will need to modify the reference path in

the “build.gradle” file of the uiextensions_src project manually.

Second, find the specific layout XML files that you want to customize in the uiextensions_src project,

then modify them based on your requirements.

Now, for your convenience, we will show you how to customize the UI implementation in the

“viewer_ctrl_demo” project found in the “samples” folder.

UI Customization Example

Step 1: Add the uiextensions_src project into the demo making sure that it is in the same folder as the

FoxitRDK.jar file. This folder should already be in the right location if you have not changed the default

folder hierarchy.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

40

Note The demo already includes references to the FoxitRDK.jar and librdk.so files, so we just need to add

the uiextensions_src project through configuring the “settings.gradle” file. When to include the

uiextensions_src project as a dependency, the reference to the FoxitRDKUIExtensions.aar needs to be

removed.

Load the “viewer_ctrl_demo” in Android Studio. Then, follow the steps below:

a) In the “settings.gradle” file, add the following code to include the uiextensions_src project.

settings.gradle:

include ':app'
include ':uiextensions_src'
project(':uiextensions_src').projectDir = new File('../../libs/uiextensions_src/')

Rebuild the gradle, then the uiextensions_src project will be added as shown in the Figure 3-1.

Figure 3-1

b) Include the uiextensions_src project as a dependency into the demo. Inside the app’s

“build.gradle” file, add the compile project(":uiextensions_src") line and comment out the

compile(name:'FoxitRDKUIExtensions', ext:'aar') line as follows:

dependencies {
 compile 'com.google.android:multidex:0.1'
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.4.0'
 compile project(":uiextensions_src")

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

41

 //compile(name:'FoxitRDKUIExtensions', ext:'aar')
}

After making the change, rebuild this gradle. Then, select “File -> Project Structure…” to open

the Project Structure dialog. In the dialog click “Modules -> app”, and select the Dependencies

option, then you can see that the demo has a dependency on the uiextensions_src project as

shown in the Figure 3-2.

Figure 3-2

Congratulations! You have completed the first step.

Step 2: Find and modify the layout files related to the UI that you want to customize.

Now we will show you a simple example that changes one button’s icon in the search panel as shown in

the Figure 3-3.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

42

Figure 3-3

To replace the icon we only need to find the place which stores the icon for this button, then use

another icon with the same name to replace it.

In the project, click “uiextensions_src -> src -> res -> layout” as shown in the Figure 3-4.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

43

Figure 3-4

In the layout list, find the “search_layout.xml” file, and double-click it. Find the button in the Preview

window, and click it to navigate to the related code as shown in the Figure 3-5.

Figure 3-5

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

44

After finishing the three steps described in the above picture, go to the “search_result_selector.xml” as

shown in the Figure 3-6. We can see that the icon is stored in the “drawable-xxx” folder with the name

of “search_result.png” by holding Ctrl and left-clicking on “search_result”. Just replace it with your own

icon.

Note Foxit Mobile PDF SDK provides three sets of icons for devices with different DPI requirements to

make sure that your apps can run smoothly on every device.

.

Figure 3-6

For example, we use the icon of the search next button (“search_next.png” stored in the same folder
with “search_result.png”) to replace it. Then, rerun the demo, try the search feature and we can see
that the icon of the bottom search button has changed as shown in the Figure 3-7.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

45

Figure 3-7

This is just a pretty simple example to show how to customize the UI implementation. You can refer to it
and feel free to customize and design the UI for your specific apps through the uiextensions_src project.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

46

4 Creating a custom tool

With Foxit Mobile PDF SDK, creating a custom tool is a simple process. There are several tools

implemented in the UI extensions library already. These tools can be used as a base for developers to

build upon or use as a reference to create a new tool. In order to create your own tool quickly, we

suggest you take a look at the uiextensions_src project found in the “libs” folder.

To create a new tool, the most important step is to create a Java class that implements the

“ToolHandler.java” interface.

In this section, we will make a Regional Screenshot Tool to show how to create a custom tool with Foxit

Mobile PDF SDK. This tool can help the users who only want to select an area in a PDF page to capture,

and then save it as an image. Now, let’s do it.

For convenience, we will build this tool based on the “viewer_ctrl_demo” project found in the “samples”

folder. Steps required for implementing this tool are as follows:

 Create a Java class named ScreenCaptureToolHandler that implements the “ToolHandler.java”

interface.

 Handle the onTouchEvent and onDraw events.

 Instantiate a ScreenCaptureToolHandler object, and then register it to the tool manager.

 Set the ScreenCaptureToolHandler object as the current tool handler.

Step 1: Create a Java class named ScreenCaptureToolHandler that implements the “ToolHandler.java”

interface.

a) Load the “viewer_ctrl_demo” project in Android Studio. Create a Java class named

“ScreenCaptureToolHandler” in the “com.foxit.pdf.viewctrl” package.

b) Let the ScreenCaptureToolHandler.java class implement the ToolHandler interface as shown in

the Figure 4-1.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

47

Figure 4-1

Step 2: Handle the onTouchEvent and onDraw events.

Update ScreenCaptureToolHandler.java as follows:

package com.foxit.pdf.pdfviewer;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Matrix;
import android.graphics.Paint;
import android.graphics.PointF;
import android.graphics.Rect;
import android.graphics.RectF;
import android.view.MotionEvent;
import android.view.ViewGroup;
import android.widget.Toast;

import com.foxit.sdk.PDFViewCtrl;
import com.foxit.sdk.common.CommonDefines;
import com.foxit.sdk.common.PDFException;
import com.foxit.sdk.pdf.PDFPage;
import com.foxit.sdk.pdf.Renderer;
import com.foxit.uiextensions.ToolHandler;
import com.foxit.uiextensions.UIExtensionsManager;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

public class ScreenCaptureToolHandler implements ToolHandler {

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

48

 private Context mContext;
 private PDFViewCtrl mPdfViewCtrl;
 private ViewGroup mParent;

 public ScreenCaptureToolHandler(Context context, ViewGroup parent, PDFViewCtrl pdfViewCtrl)
{
 mPdfViewCtrl = pdfViewCtrl;
 mContext = context;
 mParent = parent;
 }

 @Override
 public String getType() {
 return "";
 }

 @Override
 public void onActivate() {

 }

 @Override
 public void onDeactivate() {

 }

 private PointF mStartPoint = new PointF(0, 0);
 private PointF mEndPoint = new PointF(0, 0);
 private PointF mDownPoint = new PointF(0, 0);
 private Rect mRect = new Rect(0, 0, 0, 0);
 private RectF mNowRect = new RectF(0, 0, 0, 0);
 private int mLastPageIndex = -1;

 // Handle OnTouch event
 @Override
 public boolean onTouchEvent(int pageIndex, MotionEvent motionEvent) {

 // Get the display view point in device coordinate system
 PointF devPt = new PointF(motionEvent.getX(), motionEvent.getY());
 PointF point = new PointF();
 // Convert display view point to page view point.
 mPdfViewCtrl.convertDisplayViewPtToPageViewPt(devPt, point, pageIndex);
 float x = point.x;
 float y = point.y;

 switch (motionEvent.getAction()) {
 // Handle ACTION_DOWN event: get the coordinates of the StartPoint.
 case MotionEvent.ACTION_DOWN:
 if (mLastPageIndex == -1 || mLastPageIndex == pageIndex) {
 mStartPoint.x = x;
 mStartPoint.y = y;
 mEndPoint.x = x;
 mEndPoint.y = y;
 mDownPoint.set(x, y);
 if (mLastPageIndex == -1) {
 mLastPageIndex = pageIndex;
 }
 }
 return true;

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

49

 // Handle ACTION_Move event.
 case MotionEvent.ACTION_MOVE:
 if (mLastPageIndex != pageIndex)
 break;
 if (!mDownPoint.equals(x, y)) {
 mEndPoint.x = x;
 mEndPoint.y = y;

 // Get the coordinates of the Rect.
 getDrawRect(mStartPoint.x, mStartPoint.y, mEndPoint.x, mEndPoint.y);

 // Convert the coordinates of the Rect from float to integer.
 mRect.set((int) mNowRect.left, (int) mNowRect.top, (int) mNowRect.right,
(int) mNowRect.bottom);

 // Refresh the PdfViewCtrl, then the onDraw event will be triggered.
 mPdfViewCtrl.refresh(pageIndex, mRect);
 mDownPoint.set(x, y);
 }
 return true;

 // Save the selected area as a bitmap.
 case MotionEvent.ACTION_UP:
 if (mLastPageIndex != pageIndex)
 break;
 if (!mStartPoint.equals(mEndPoint.x, mEndPoint.y)) {
 renderToBmp(pageIndex, "/mnt/sdcard/ScreenCapture.bmp");
 Toast.makeText(mContext, "The selected area was saved as a bitmap stored
in the /mnt/sdcard/ScreenCapture.bmp", Toast.LENGTH_LONG).show();
 }
 mDownPoint.set(0, 0);
 mLastPageIndex = -1;
 return true;
 default:
 return true;
 }
 return true;
 }

 // Save a bimap to a specified path.
 public static void saveBitmap(Bitmap bm, String outPath) throws IOException {
 File file = new File(outPath);
 file.createNewFile();

 FileOutputStream fileout = null;
 try {
 fileout = new FileOutputStream(file);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 bm.compress(Bitmap.CompressFormat.JPEG, 100, fileout);
 try {
 fileout.flush();
 fileout.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

50

 // Render the selected area to a bitmap.
 private void renderToBmp(int pageIndex, String filePath) {
 try {
 PDFPage page = mPdfViewCtrl.getDoc().getPage(pageIndex);

 mPdfViewCtrl.convertPageViewRectToPdfRect(mNowRect, mNowRect, pageIndex);
 int width = (int) page.getWidth();
 int height = (int) page.getHeight();

 Bitmap bmp = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
 bmp.eraseColor(Color.WHITE);

 // Create a Renderer object
 Renderer renderer = Renderer.create(bmp);

 // Get the display matrix.
 Matrix matrix = page.getDisplayMatrix(0, 0, width, height, 0);
 int progress = renderer.startRender(page, matrix, null);
 while (progress == CommonDefines.e_progressToBeContinued) {
 progress = renderer.continueRender();
 }
 // Create a bitmap with the size of the selected area.
 bmp = Bitmap.createBitmap(bmp, (int) mNowRect.left, (int) (height - mNowRect.top),
(int) mNowRect.width(), (int) Math.abs(mNowRect.height()));
 try {
 saveBitmap(bmp, filePath);
 } catch (IOException e) {
 e.printStackTrace();
 }
 } catch (PDFException e) {
 e.printStackTrace();
 }
 }

 //Get the coordinates of a Rect.
 private void getDrawRect(float x1, float y1, float x2, float y2) {
 float minx = Math.min(x1, x2);
 float miny = Math.min(y1, y2);
 float maxx = Math.max(x1, x2);
 float maxy = Math.max(y1, y2);

 mNowRect.left = minx;
 mNowRect.top = miny;
 mNowRect.right = maxx;
 mNowRect.bottom = maxy;
 }

 @Override
 public boolean onLongPress(int i, MotionEvent motionEvent) {
 return false;
 }

 @Override
 public boolean onSingleTapConfirmed(int i, MotionEvent motionEvent) {
 return false;
 }

 //Handle the drawing event.
 @Override
 public void onDraw(int pageIndex, Canvas canvas) {

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

51

 if (((UIExtensionsManager)
mPdfViewCtrl.getUIExtensionsManager()).getCurrentToolHandler() != this)
 return;
 if (mLastPageIndex != pageIndex) {
 return;
 }
 canvas.save();
 Paint mPaint = new Paint();
 mPaint.setStyle(Paint.Style.STROKE);
 mPaint.setAntiAlias(true);
 mPaint.setDither(true);
 mPaint.setColor(Color.BLUE);
 mPaint.setAlpha(200);
 mPaint.setStrokeWidth(3);
 canvas.drawRect(mNowRect, mPaint);
 canvas.restore();
 }
}

Step 3: Instantiate a ScreenCaptureToolHandler object and then register it to the

UIExtensionsManager.

private ScreenCaptureToolHandler screenCapture = null;
...
screenCapture = new SelectRectToolHandler(this, parent, pdfViewCtrl);

uiExtensionsManager.registerToolHandler(screenCapture);

Step 4: Set the ScreenCaptureToolHandler object as the current tool handler.

uiExtensionsManager.setCurrentToolHandler(screenCapture);

Now, we have really finished creating a custom tool. In order to see what the tool looks like, we need

to make it run. Just add a menu item and add the code referred in Step 3 and Step 4 to MainActivity.java.

First, add a menu item in Main.xml found in the “app/src/main/res/menu” as follows.

<item
 android:id="@+id/screencapture"
 android:title="ScreenCapture"/>

Then, add the following code to the onOptionsItemSelected() function in MainActivity.java.

if (itemId == R.id.screencapture) {
 if (screenCapture == null) {
 screenCapture = new ScreenCaptureToolHandler(this, parent, pdfViewCtrl);
 uiExtensionsManager.registerToolHandler(screenCapture);
 }
 uiExtensionsManager.setCurrentToolHandler(screenCapture);
}

Please remember to instantiate a ScreenCaptureToolHandler object at first, like (private

ScreenCaptureToolHandler screenCapture = null;).

After finishing all of the above work, build and run the demo.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

52

Note Here, we run the demo on an AVD targeting 4.4.2. Please make sure you have pushed the

“getting_started_android.pdf” document into the emulator’s SD card.

After building the demo successfully, click the menu to find the ScreenCapture option as shown in the

Figure 4-2.

Figure 4-2

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

53

Click the ScreenCapture, select a rectangular area, and then a message box will be popped up as shown

in the Figure 4-3. It shows where the bitmap (selected area) was saved to.

Figure 4-3

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

54

In order to verify whether the tool captures the selected area successfully, we need to find the

screenshot. Open the Android Device Monitor, we can see the screenshot named “ScreenCapture.bmp”

in the SD card as shown in the Figure 4-4.

Figure 4-4

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

55

Pull the ScreenCapture.bmp from the emulator, we can see the image as shown in the Figure 4-5.

Figure 4-5

As you can see we have successfully created a Regional Screenshot Tool. This is just an example to show

how to create a custom tool with Foxit Mobile PDF SDK. You can refer to it or our demos to develop the

tools you want.

http://www.foxitsoftware.com/

Foxit Mobile PDF SDK

www.foxitsoftware.com

56

5 Technical Support

Reporting Problems

Foxit offers 24/7 support for its products and are fully supported by the PDF industry’s largest

development team of support engineers. If you encounter any technical questions or bug issues when

using Foxit Mobile PDF SDK, please submit the problem report to the Foxit support team at

http://tickets.foxitsoftware.com/create.php. In order to better help you solve the problem, please

provide the following information:

 Contact details

 Foxit Mobile PDF SDK product and version

 Your Operating System and IDE version

 Detailed description of the problem

 Any other related information, such as log file or error screenshot

Contact Information

You can contact Foxit directly, please use the contact information as follows:

Foxit Support:

 http://www.foxitsoftware.com/support/

Sales Contact:

 Phone: 1-866-680-3668

 Email: sales@foxitsoftware.com

Support & General Contact:

 Phone: 1-866-MYFOXIT or 1-866-693-6948

 Email: support@foxitsoftware.com

http://www.foxitsoftware.com/
http://tickets.foxitsoftware.com/create.php
http://www.foxitsoftware.com/support/
mailto:sales@foxitsoftware.com
mailto:support@foxitsoftware.com

	1 Introduction to Foxit Mobile PDF SDK
	1.1 Why Foxit Mobile PDF SDK is your choice
	1.2 Foxit Mobile PDF SDK
	1.3 Key Features
	1.4 Evaluation
	1.5 License
	1.6 About this Guide

	2 Getting Started
	2.1 System Requirements
	2.2 What is in the Package
	2.3 How to run a demo
	2.3.1 Function demo
	2.3.2 Viewer control demo
	2.3.3 Complete PDF viewer demo

	2.4 How to make an Android app with Foxit Mobile PDF SDK
	2.4.1 Create a new Android project
	2.4.2 Integrate Foxit Mobile PDF SDK into your apps
	2.4.3 Apply the license key
	2.4.4 Display a PDF document
	2.4.5 Add support for Text Search, Bookmarks, and Annotations

	3 Customizing the UI implementation
	4 Creating a custom tool
	5 Technical Support

